Version 1.0 is the current version. See the Version 1.0 documentation.

Frequently Asked Questions

Q: Why is SLSA not transitive?

SLSA Build levels only cover the trustworthiness of a single build, with no requirements about the build levels of transitive dependencies. The reason for this is to make the problem tractable. If a SLSA Build level required dependencies to be the same level, then reaching a level would require starting at the very beginning of the supply chain and working forward. This is backwards, forcing us to work on the least risky component first and blocking any progress further downstream. By making each artifact’s SLSA rating independent from one another, it allows parallel progress and prioritization based on risk. (This is a lesson we learned when deploying other security controls at scale throughout Google.) We expect SLSA ratings to be composed to describe a supply chain’s overall security stance, as described in the case study vision.

Q: What about reproducible builds?

When talking about reproducible builds, there are two related but distinct concepts: “reproducible” and “verified reproducible.”

“Reproducible” means that repeating the build with the same inputs results in bit-for-bit identical output. This property provides many benefits, including easier debugging, more confident cherry-pick releases, better build caching and storage efficiency, and accurate dependency tracking.

“Verified reproducible” means using two or more independent build systems to corroborate the provenance of a build. In this way, one can create an overall system that is more trustworthy than any of the individual components. This is often suggested as a solution to supply chain integrity. Indeed, this is one option to secure build steps of a supply chain. When designed correctly, such a system can satisfy all of the SLSA Build level requirements.

That said, verified reproducible builds are not a complete solution to supply chain integrity, nor are they practical in all cases:

  • Reproducible builds do not address source, dependency, or distribution threats.
  • Reproducers must truly be independent, lest they all be susceptible to the same attack. For example, if all rebuilders run the same pipeline software, and that software has a vulnerability that can be triggered by sending a build request, then an attacker can compromise all rebuilders, violating the assumption above.
  • Some builds cannot easily be made reproducible, as noted above.
  • Closed-source reproducible builds require the code owner to either grant source access to multiple independent rebuilders, which is unacceptable in many cases, or develop multiple, independent in-house rebuilders, which is likely prohibitively expensive.

Therefore, SLSA does not require verified reproducible builds directly. Instead, verified reproducible builds are one option for implementing the requirements.

For more on reproducibility, see Hermetic, Reproducible, or Verifiable?

Q: How does SLSA relate to in-toto?

in-toto is a framework to secure software supply chains hosted at the Cloud Native Computing Foundation. The in-toto specification provides a generalized workflow to secure different steps in a software supply chain. The SLSA specification recommends in-toto attestations as the vehicle to express Provenance and other attributes of software supply chains. Thus, in-toto can be thought of as the unopinionated layer to express information pertaining to a software supply chain, and SLSA as the opinionated layer specifying exactly what information must be captured in in-toto metadata to achieve the guarantees of a particular level.

in-toto’s official implementations written in Go, Java, and Rust include support for generating SLSA Provenance metadata. These APIs are used in other tools generating SLSA Provenance such as Sigstore’s cosign, the SLSA GitHub Generator, and the in-toto Jenkins plugin.